test equation in katex
\[f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi\]
📝 enable katex with front matter in current page:
--- math: katex ---
-
math block:
\(K(a,b) = \int \mathcal{D}x(t) \exp(2\pi i S[x]/\hbar)\)
$$ K(a,b) = \int \mathcal{D}x(t) \exp(2\pi i S[x]/\hbar) $$
-
math inline:
this is inline function $f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi$ and another inline function $ e = m c^2 $
this is inline function $f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi$ and another inline function $ e = m c^2 $
-
some usages;
inline is displayed: \(f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi\)
\(f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi\)
inline is displayed: $$f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi$$ center is displayed: $$f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi$$
-
other equations for test:
\[y=\frac{1}{2} \times \sqrt{x^2-1} \\ y=\cfrac{1}{2+\cfrac{1}{2}} \\ y=\int \! (x^2-1) dx \\ y=\int (x^2-1) dx \\ y=\int_{a}^{b=10} (x^2-1) dx \\ y=\sum_{x=1}^ {100} (x^2-1)- 1 \\ BER= erfc(\frac{Q}{\sqrt{2}})\] \[\fbox {this is a demo equation: } \\ BER= erfc(\frac{Q}{\sqrt{2}})\]$$ y=\frac{1}{2} \times \sqrt{x^2-1} \\ y=\cfrac{1}{2+\cfrac{1}{2}} \\ y=\int \! (x^2-1) dx \\ y=\int (x^2-1) dx \\ y=\int_{a}^{b=10} (x^2-1) dx \\ y=\sum_{x=1}^ {100} (x^2-1)- 1 \\ BER= erfc(\frac{Q}{\sqrt{2}}) $$ $$ \fbox {this is a demo equation: } \\ BER= erfc(\frac{Q}{\sqrt{2}}) $$
links: